Page personelle de Cieutat
Philippe Cieutat
Professeur Agrégé (Classe exceptionnelle), HDR
Bâtiment Fermat, bureau 2303
Adresse postale: Université de Versailles Saint-Quentin-en-Yveines,
Laboratoire de Mathématiques de Versailles (LMV), CNRS UMR 8100, Bâtiment Fermat,
45, avenue des Etats-Unis, 78035 Versailles Cedex, France
Tel : (+33) 1 39 25 46 34
Fax : (+33) 1 39 25 46 45
E-mail philippe.cieutat@uvsq.fr
Dernier diplôme obtenu
Habilitation à Diriger des Recherches soutenues le 2 février 2015 à l'UVSQ (mémoire téléchargeable en bas de page)
Liste des publications
[35] P. Cieutat, On Bochner's almost-periodicity criterion Evol. Equ. Control Theory 12 (2023), 1233-1246.
[34] P. Cieutat, Nemytskii operators between Stepanov almost periodic or almost automorphic function spaces, Commun. Math. Anal. 23 (2020), 82-113.
[33] E. Ait Dads, P. Cieutat, L. Lhachimi, Structure of the bounded solutions of pseudo alomost prriodic solutions of a vector Liénard differential equation, Nonauton. Dyn. Syst. 6 (2019), 35-56.
[32] T.Z. Boulmezaoud, P. Cieutat, A. Daniilidis, Gradient flows, second order gradient systems and convexity, SIAM J. Optim. 28 (2018), 2049-2066.
[31] J. Blot, P. Cieutat, Completeness of sums of subspaces of bounded functions and applications, Commun. Math. Anal. 19 (2016), 43-61.
[30] J. Blot, C. Buse, P. Cieutat, Local attractivity in nonautonomous semilinear evolution equations, Nonauton. Dyn. Syst. 1 (2014), 72-82.
[29] J. Blot, S. Boudjema, P. Cieutat, Dependence results for S-asymptotically periodic solutions of evolution equations, Nonlinear Stud. 20 (2013), 295-307.
[28] J. Blot, S. Boudjema, P. Cieutat, Several kinds of oscillations in forced Liénard equations, Bound. Value Probl. (2013), 2013:66, 11 pp.
[27] J. Blot, P. Cieutat, K. Ezzinbi, New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic theory and applications, Appl. Anal. 92 (2013), 493-526.
[26] J. Blot, P. Cieutat, K. Ezzinbi, Measure theory and pseudo almost automorphic functions, new developments and applications, Nonlinear Anal. 75 (2012), 2426-2447.
[25] J. Blot, P. Cieutat, G.M. N’Guérékata, S-asymptotically ω-periodic functions and applications to evolution equations, Afr. Diaspora J. Math. 12 (2011), 113-121 (Special Volume in Honor of Profs. C. Corduneanu, A. Fink, and S. Zaidman).
[24] M. Ayachi, J. Blot, P. Cieutat, Almost periodic solutions of monotone second-order differential equations, Adv. Nonlinear Stud. 11 (2011), 541-554.
[23] P. Cieutat, K. Ezzinbi, Almost automorphic solutions for some evolution equations through the minimizing for some subvariant functional, applications to heat and wave equations with nonlinearities, J. Funct. Anal. 260 (2011), 2598-2634.
[22] P. Cieutat, K. Ezzinbi, Positive pseudo almost automorphic solutions for some nonlinear infinite delay integral equations, Afr. Diaspora J. Math. 12 (2011), 19-33 (Special Volume in Honor of Profs. C. Corduneanu, A. Fink, and S. Zaidman).
[21] J. Blot, P. Cieutat, G. M. N’Guérékata, Dependence results on almost periodic and almost automorphic solutions of evolution equations, Electron J. Diferential Equations 101 (2010), 1-13.
[20] P. Cieutat, S. Fatajou, G.M. N’Guérékata, Composition of pseudo almost periodic and pseudo almost automorphic functions and applications to evolution equations, Appl. Anal. 89 (2010), 11-27.
[19] E. Ait Dads, P. Cieutat, S. Fatajou, Pseudo almost automorphic solutions for some nonlinear differential equations: Liénard equations and Hamiltonian systems, Int. J. Evol. Equ. 4 (2010), 191-211.
[18] Ait Dads, P. Cieutat, L. Lhachimi, Existence of positive almost periodic or ergodic solutions for some neutral nonlinear integral equations, Differential Integral Equations 22 (2009), 1075-1096.
[17] P. Cieutat, K. Ezzinbi, Existence, uniqueness and attractiveness of a pseudo almost automorphic solutions for some dissipative differential equations in Banach spaces, J. Math. Anal. Appl. 354 (2009), 494-506.
[16] E. Ait Dads, P. Cieutat, L. Lhachimi, Positive pseudo almost periodic solutions for some nonlinear infinite delay integral equations, Math. Comput. Modelling 49 (2009), 721-739.
[15] P. Cieutat, S. Fatajou et G.M. N’Guérékata, Bounded and almost automorphic solutions of some nonlinear differential equation in Banach spaces, Nonlinear Anal. 71 (2009), 674-684.
[14] J. Blot, P. Cieutat, G.M. N’Guérékata, D. Pennequin, Superposition operators between various almost periodic function spaces and applications, Commun. Math. Anal. 6 (2008), 42-70.
[13] E. Ait Dads, P. Cieutat, L. Lhachimi, Positive almost automorphic solutions for some nonlinear infinite delay integral equations, Dynam. Systems Appl. 17 (2008) 515-538.
[12] P. Cieutat, S. Fatajou, G.M. N’Guérékata, Bounded and almost automorphic solutions of a Liénard equation with a singular nonlinearity, Electron J. Qual. Theory Differ. Equ. 21 (2008), 1-15.
[11] E. Ait Dads, P. Cieutat, K. Ezzinbi, The existence of pseudo-almost periodic solutions for some nonlinear differential equations in a Banach space, Nonlinear Anal. 69 (2008), 1325-1342.
[10] E. Ait Dads, P. Cieutat, L. Lhachimi, Structure of the set of bounded solutions and existence of pseudo almost-periodic solutions of a Liénard equation, Differential Integral Equations 20 (2007), 793-813.
[9] P. Cieutat, Necessary and sufficient conditions for existence and uniqueness of bounded or almost-periodic solutions for differential systems with convex potential, Differential Integral Equations 18 (2005), 361-378.
[8] P. Cieutat, Almost periodic solutions of forced vectorial Liénard equations, J. Differential Equations 209 (2005), 302-328.
[7] P. Cieutat, On the structure of the set of bounded solutions on an almost periodic Liénard equation, Nonlinear Anal. 58 (2004), 885-898.
[6] P. Cieutat, Maximum principle and existence of almost-periodic solutions of second-order differential systems, Differential Integral Equations 17 (2004), 921-942.
[5] P. Cieutat, Almost periodic solutions of second-order systems with monotone fields on a compact subset, Nonlinear Anal. 53 (2003), 751-763.
[4] P. Cieutat, Bounded and almost periodic solutions of convex Lagrangian systems, J. Differential Equations 190 (2003), 108-130.
[3] P. Cieutat, A. Haraux, Exponential decay and existence of almost periodic solutions for some linear forced differential equations, Port. Math. 59 (2002), 141-159.
[2] J. Blot, P. Cieutat, J. Mawhin, Almost-periodic oscillations of monotone second-order systems, Adv. Differential Equations 2 (1997), 693-714.
[1] P. Cieutat, Un principe variationnel pour une équation d'évolution parabolique, (french) [A variational principle for a parabolic evolution equation] C.R. Math. Acad. Sci. Paris 318 (1994), 995-998.
Fichier attaché | Taille |
---|---|
HDR Cieutat.pdf | 725.48 Ko |
Exposé HDR.pdf | 2.64 Mo |