Page personelle de Cieutat

Philippe Cieutat

Professeur Agrégé (Hors classe), HDR

Bâtiment Fermat, bureau 2303

Adresse postale: Université de Versailles Saint-Quentin-en-Yveines,

Laboratoire de Mathématiques de Versailles (LMV), CNRS UMR 8100, Bâtiment Fermat,

45, avenue des Etats-Unis, 78035 Versailles Cedex, France

Tel : (+33) 1 39 25 46 34

Fax : (+33) 1 39 25 46 45

E-mail  philippe.cieutat@uvsq.fr

 

Dernier diplôme obtenu

Habilitation à Diriger des Recherches soutenues le 2 février 2015 à l'UVSQ (mémoire téléchargeable en bas de page)

 

Liste des publications

[30] J. Blot, C. Buse, P. Cieutat, Local attractivity in nonautonomous semilinear evolution equations, Nonauton. Dyn. Syst. 1 (2014), 72-82.

[29] J. Blot, S. Boudjema, P. Cieutat, Dependence results for S-asymptotically periodic solutions of evolution equations, Nonlinear Stud. 20 (2013), 295-307.

[28] J. Blot, S. Boudjema, P. Cieutat, Several kinds of oscillations in forced Liénard equations, Bound. Value Probl. (2013), 2013:66, 11 pp.

[27] J. Blot, P. Cieutat, K. Ezzinbi, New approach for weighted pseudo-almost periodic functions under the light  of measure theory, basic theory and applications, Appl. Anal. 92 (2013), 493-526.

[26] J. Blot, P. Cieutat, K. Ezzinbi, Measure theory and pseudo almost automorphic functions, new developments and applications, Nonlinear Anal. 75 (2012), 2426-2447.

[25] J. Blot, P. Cieutat, G.M. N’Guérékata, S-asymptotically ω-periodic functions and applications to evolution equations, Afr. Diaspora J. Math. 12 (2011), 113-121 (Special Volume in Honor of Profs. C. Corduneanu, A. Fink, and S. Zaidman).

[24] M. Ayachi, J. Blot, P. Cieutat, Almost periodic solutions of monotone second-order differential equations, Adv. Nonlinear Stud. 11 (2011), 541-554.

[23] P. Cieutat, K. Ezzinbi, Almost automorphic solutions for some evolution equations through the minimizing for some subvariant functional, applications to heat and wave equations with nonlinearities, J. Funct. Anal. 260 (2011), 2598-2634.

[22] P. Cieutat, K. Ezzinbi, Positive pseudo almost automorphic solutions for some nonlinear infinite delay integral equations, Afr. Diaspora J. Math. 12 (2011), 19-33 (Special Volume in Honor of Profs. C. Corduneanu, A. Fink, and S. Zaidman).

[21] J. Blot, P. Cieutat, G. M. N’Guérékata, Dependence results on almost periodic and almost automorphic solutions of evolution equations, Electron J. Diferential Equations 101 (2010), 1-13.

[20] P. Cieutat, S. Fatajou, G.M. N’Guérékata, Composition of pseudo almost periodic and pseudo almost automorphic functions and applications to evolution equations, Appl. Anal. 89 (2010), 11-27.

[19] E. Ait Dads, P. Cieutat, S. Fatajou, Pseudo almost automorphic solutions for some nonlinear differential equations: Liénard equations and Hamiltonian systems, Int. J. Evol. Equ. 4 (2010), 191-211.

[18] Ait Dads, P. Cieutat, L. Lhachimi, Existence of positive almost periodic or ergodic solutions for some neutral nonlinear integral equations, Differential Integral Equations 22 (2009), 1075-1096.

[17] P. Cieutat, K. Ezzinbi, Existence, uniqueness and attractiveness of a pseudo almost automorphic solutions for some dissipative differential equations in Banach spaces, J. Math. Anal. Appl. 354 (2009), 494-506.

[16] E. Ait Dads, P. Cieutat,0L. Lhachimi, Positive pseudo almost periodic solutions for some nonlinear infinite delay integral equations, Math. Comput. Modelling 49 (2009), 721-739.

[15] P. Cieutat, S. Fatajou et G.M. N’Guérékata, Bounded and almost automorphic solutions of some nonlinear differential equation in Banach spaces, Nonlinear Anal. 71 (2009), 674-684.

[14] J. Blot, P. Cieutat, G.M. N’Guérékata, D. Pennequin, Superposition operators between various almost periodic function spaces and applications, Commun. Math. Anal. 6 (2008), 42-70.

[13] E. Ait Dads, P. Cieutat, L. Lhachimi, Positive almost automorphic solutions for some nonlinear infinite delay integral equations, Dynam. Systems Appl. 17 (2008) 515-538.

[12] P. Cieutat, S. Fatajou, G.M. N’Guérékata, Bounded and almost automorphic solutions of a Liénard equation with a singular nonlinearity, Electron J. Qual. Theory Differ. Equ. 21 (2008), 1-15.

[11] E. Ait Dads, P. Cieutat, K. Ezzinbi, The existence of pseudo-almost periodic solutions for some nonlinear differential equations in a Banach space, Nonlinear Anal. 69 (2008), 1325-1342.

[10] E. Ait Dads, P. Cieutat, L. Lhachimi, Structure of the set of bounded solutions and existence of pseudo almost-periodic solutions of a Liénard equation, Differential Integral Equations 20 (2007), 793-813.

[9] P. Cieutat, Necessary and sufficient conditions for existence and uniqueness of bounded or almost-periodic solutions for differential systems with convex potential, Differential Integral Equations 18 (2005), 361-378.

[8] P. Cieutat, Almost periodic solutions of forced vectorial Liénard equations, J. Differential Equations 209 (2005), 302-328.

[7] P. Cieutat, On the structure of the set of bounded solutions on an almost periodic Liénard equation, Nonlinear Anal. 58 (2004), 885-898.

[6] P. Cieutat, Maximum principle and existence of almost-periodic solutions of second-order differential systems, Differential Integral Equations 17 (2004), 921-942.

[5] P. Cieutat, Almost periodic solutions of second-order systems with monotone fields on a compact subset, Nonlinear Anal. 53 (2003), 751-763.

[4] P. Cieutat, Bounded and almost periodic solutions of convex Lagrangian systems, J. Differential Equations 190 (2003), 108-130.

[3] P. Cieutat, A. Haraux, Exponential decay and existence of almost periodic solutions for some linear forced differential equations, Port. Math. 59 (2002), 141-159.

[2] J. Blot, P. Cieutat, J. Mawhin, Almost-periodic oscillations of monotone second-order systems, Adv. Differential Equations 2 (1997), 693-714.

[1] P. Cieutat, Un principe variationnel pour une équation dvolution parabolique, (french) [A variational principle for a parabolic evolution equation] C.R. Math. Acad. Sci. Paris 318 (1994), 995-998.


 

Fichier attachéTaille
HDR Cieutat.pdf725.48 Ko
Exposé HDR.pdf2.64 Mo